

LES RENCONTRES DE THURET 4e édition

Liberté Égalité Fraternité

> Invasions biologiques végétales et animales *en Méditerranée*

Detection and management of alien scolytids invading Europe

Massimo Faccoli

University of Padua

UNIVERSITÀ DEGLI STUDI DI PADOVA

The number of alien species is constantly increasing worldwide ...

Ecology of forest insect invasions

International trade is constantly increasing

Estimating the effects of the container revolution on world trade

Daniel M. Bernhofen Ab.c., Zouheir El-Sahli d, Richard Kneller b.c.e

* American University, United Status * OEIdio, Germany * GEP, Ensived Kingdom

* Lond University, Sweilen * University of Natzingham, United Kingdom

Climate change favors nonnative species invasion

Review

Alien species in a warmer world: risks and opportunities

Gian-Reto Walther¹, Alain Roques², Philip E, Hulme³, Martin T. Sykes⁴, Petr Pyšek^{3,6}, Ingolf Kühn⁷, Martin Zobel⁶, Sven Bacher⁹, Zoltan Botta-Dukat¹⁰, Harald Bugmann¹¹, Balint Czucz¹⁰, Jens Dauber¹², Thomas Hickler⁴, Vojtěch Jarošik^{5,6}, Marc Kenis¹³, Stefan Klotz², Dan Minchin¹⁴, Mari Moora⁸, Wolfgang Nentwig¹⁵, Júrgen Ott¹⁶, Vadim E. Panov¹⁷, Björn Reineking¹⁸, Christelle Robinet², Vitaliy Semenchenko¹⁹, Wojciech Solarz²⁰, Wilfried Thuiller²¹, Montserrat Vilá²², Katrin Vohland²³ and Josef Settele²

Cel

Where are alien species from?

Origin of the invasions

Mainly from Asia and N America, BUT.....

Global rise in emerging alien species results from increased accessibility of new source pools

Hanno Seebens^{Ah, *}, Tim M. Blackbum^{6,4}, Ellie E. Dyer^{4,4}, Riero Genoves^{4,6}, Philip F, Hulme⁸, Jonatham M, Jeschke^{4,10}, Shyama Pagad, Petr Pylek^{7,n}, Mark van Kleunen^{6,2}, Martan Winter⁶, Michael Anoorg¹, Margarita Arianoutsou¹, Sven Bacher¹, Bernd Blasiuki, Eckhand G, Brockerhoff¹, Gluseppe Brundu², Clasar Capinha^{1,4}, Charlotte E. Causton¹, Laura Celesti-Grapow¹⁰, Wayne Dawson¹⁰, Stefan Dullinger¹, Evan P. Economo¹, Nicol Fuentes⁴⁰, Benoit Guénard⁴¹, Heinke Jäger¹, John Kartesz⁴, Marc Kenis⁴⁰, Ingolf Kühn^{10,40,41}, Bernd Lenzner³, Andrew M. Liebhold⁸¹, Heinke Jäger¹, John Kartesz⁴, Marc Kenis⁴⁰, Ingolf Kühn^{10,40,41}, Bernd Lenzner³, Andrew M. Liebhold⁸¹, Melen E. Roy⁴⁷, Heinke Jäger⁴, John Sartesz⁴, Marc Kenis⁴⁰, Ingolf Kühn^{10,40,41}, Bernd Lenzner³, Andrew M. Liebhold⁸¹, Jan Pergf⁴⁷, Heinke Jäger⁴, John Sartesz⁴, Marc Kenis⁴⁰, Alain Rogues^{41,5}, Stephanie Rocke⁴¹, Silvia Rossinell¹¹, Heien E. Roy⁴⁷, Riccardo Scalera⁹, Stefan Schindler¹, Katelina Stajierov^{41,10}, Barbara Tokarska-Guzik⁴¹, Kevin Walker^{41,5}

... exploring new markets means accessibility of new species pools

Biol Invasions (2017) 19:3141–3159 DOI 10.1007/s10530-017-1514-1

FOREST INVASION

Ecology of forest insect invasions

Who are the invaders?

Emma Edney-Browne · Eckehard G. Brockerhoff · Darren Ward S

Deborah G. McCullough^{1,#}, Timothy T. Work², Joseph F. Cavey³, Andrew M. Liebhold⁴ & David Marshall⁵

Wood-boring beetles are among the most common alien species, and scolytids are the most succesfull ones!

Why alien scolytids are so important?

Many species can be extremely destructive

Easily transported in many different woody products such as:

Wood, timber, wood-packaging materials, ornamental plants, bonsai ...

Distribution of alien scolytids in Europe: mainly in Mediterranean countries

ZooKeys 56: 227–251 (2010) doi: 10.3897/zookeys.56.529 www.pensoftonline.net/zookeys

Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe

Lawrence R. Kirkendall¹, Massimo Faccoli²

Why mainly in Med regions?

Climatic conditions (mild winters, warm summers, wet spring and falls)

High forest and habitat diversity

High number of major international ports

Temporal trend of the invasions

Alien Wood-Boring Beetles in Mediterranean Regions

Davide Rassati, François Lieutier, and Massimo Faccoli

© Springer International Publishing Switzerland 2016 T.D. Paine, F. Lieutier (eds.), *Insects and Diseases of Mediterranean Forest Systems*, DOI 10.1007/978-3-319-24744-1_6

Temporal trend of the invasions: the example of France

Scolytinae, Platypodinae) alien to Europe

www.pensoftonline.net/zookeys

Lawrence R. Kirkendall¹, Massimo Faccoli²

International trade will continue to expand, and as well the number of established alien pests

How to contain the problem?

1) Drawing up inventories of the alien species: Which species are already present in our countries?

The first inventory of aliens at a continental scale!

JOINT RESEARCH CENTRE European Alien Species Information Network - EASIN

https://easin.jrc.ec.europa.eu/

EASIN facilitates the exploration of existing Alien Species information from a variety of distributed information sources

Welcome to EASIN

EASIN (European Alien Species Information Network) is a platform developed by the European Commission's Joint Research Centre which enables easy access to data on Alien Species reported in Europe.

EASIN builds on collaboration with existing European and global projects to deliver tools and information in support of Alien Species policies.

EASIN has been appointed as the information exchange mechanism supporting the implementation of European Regulation 1143/2014 on prevention and management of introduction and spread of Invasive Alien Species (IAS).

Search for Alien Species

Baseline Distribution of Invasive Alien Species of Union Concern

2) Better understand the entry pathways

How the alien species may reach and entry our countries?

Pathway evaluation and pest risk management in transport (PERMIT)

Summary

Movements of Invasive Alien Species (IAS) globally by trade and human movement present severe and increasing risks of transfer of plant pests (principally invertebrates and plant pathogens) globally. Climate change adds further opportunities for pest establishment and impact, both by providing increased survival and growth opportunities for pests and, through environmental stresses, making trees more vulnerable to those

EU COST Action FP1002

Different species use different pathways!

	Coleoptera	Diptera	Hemiptera	Homoptera	Hymenoptera	Isoptera	Lepidoptera	Orthoptera	Thysanoptera
Plants for planting	•	•	•		•	•	•	•	
Wood-packaging materials		•	•	•	•	•	•	•	•
Logs		•	•	•	•	•	•	•	•
Processed wood		•	•	•	•	•	•	•	•
Containers				•	•	•		•	•
Vehicles and machinery				•	•	•		•	•
Passengers	•		•		•	•	•	•	•
Mail					•	•		•	•

a) Trap models

a) Trap models

Many trap models of different colors, size, and shape are available on the market, but....

... different species needs different requirements!

b) Trap position

Identify the best sites for survey!

Import

Forest cover

Forest type

c) Lures type

How to choose the best lure type?

Unknown target species (generic early-detection of a wide range of species)

Use of **generic lures** (e.g., ethanol, α -pinene) in the point-of-entry

Use of **specific pheromones** (if available) in the target ecosystem

Well-known target species (Invasive quarantine species)

4) Develop new tools, strategies and detection methods

ANOPLORISK: Risk Management for the EC listed Anoplophora species, A. chinensis and A. glabripennis

Developing tools for on-site phytosanitary inspection How to contain the problem? 5) International collaboration and coordination: exploit information on interceptions from international databases!

USDA

PIN

(Port Information Network)

EUROPHYT: European Union Notification System for Plant Health Interceptions

> Which species are most commonly intercepted in EU countries?

Which species are most commonly intercepted in other continents?

6) Quick and sure identification of trapped insects and associated organisms:

Genetic analysis: DNA metabarcoding

Morphological taxonomy:

better exploit and reinforce laboratories for species identification

List of trapped species (if I have primers or keys)

7) Citizen science: awareness raising campaigns: keep **people informed** and exploit citizen science!

USA: survey of alien species at home!

Download the IAS Europe App

Developed by JRC through MYGEOSS and EASIN teams, the app enables to report Invasive Alien Species occurrences in Europe allowing citizens to countribute to early detections of new invaders.

LIFE ARTEMIS

Awareness Raising, Training and Measures on Invasive alien Species in forests

LIFE15 GIE/SI/000770

Conclusions

- Biological invasions will increase in the next future
- We cannot stop them!
- But we can contrast by:
 - 1) Better knowledge of IAS

- 2) Better understanding of arrival pathways
- 3) Develop and exploit new and innovative tools
- 4) Increase collaboration between operators and stakeholders
- 5) Increase International collaboration and coordination
- 6) Quick species identification
- 7) Exploit citizen science

